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Summary:  Small scale, light weight Unmanned Aerial Vehicles (UAVs) have very limited 
payload capacity. Yet the demands for greater mission complexity as well as increased flight 
performance tend towards increased onboard processing. This research examines the idea of 
designing a UAV control system in a low cost FPGA device using a custom designed 
processor core that has been specifically tailored to minimize the sensor interface. Data 
received by the sensor system is available directly to registers within the processor, and is 
updated by independent means. The processor is free of data gathering activities thanks to the 
parallel nature of FPGA design. This approach leads to a compact low cost system that has 
been optimized toward lightweight UAV control systems. This research has been conducted as 
part of an undergraduate thesis project at Monash University.  
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Introduction 
 
As with most typical control systems, a flight controller consists of an input stage, control or 
processing stage and an output stage.  The input stage is realised in the form of sensors 
measuring parameters such as static and dynamic air pressure, temperature, acceleration, etc. 
During the processing stage the input data can be used to determine the value of states such as 
altitude, spatial location as well as the pose of the aircraft. Further, the processing stage is then 
able to use the value of these states to determine an action to implement in the output stage 
where, in the case of a UAV, is usually control surface manipulation or throttle. The control 
processing stage is implemented in a Field Programmable Gate Array (FPGA). FPGAs can be 
advantageous over using commercial off the shelf processing platforms because they are easily 
expandable and configurable to allow for new features or different approaches to solving a 
problem. The flexibility of an FPGA allows for three abstract design philosophies: hardware 
implemented control, software implemented control on a processor core or a combination of 
hardware and software implementation. As outlined later in the paper, it was decided to use a 
combination of hardware and software. Control is mainly implemented in software run on a 
soft processor core with support for input and output coming from hardware modules 
interfaced to the core. 
 
The processor core used was based loosely on a simple single instruction per clock cycle 
MIPS pipeline [1]. The example provided a simple 8-bit system with limited capabilities  
however beginning with a simple core made radical modifications to the architecture easier to 
perform. A new I/O system was developed to make data transfer to and from physical devices 
(or their controllers) easier for the user and less load on the Central Processing Unit (CPU). 
The output system consists of a series of 32-bit wide registers which the user can manipulate 
as easy as modifying the processors internal registers. Similarly the input data is provided to 
the processor on a number of 32-bit bus structures and can be accessed through register 
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transfer commands. This allows users to easily interact with the real world sensors without 
wasting CPU cycles. While the processor core is not a completely optimized processing 
solution, it is useful enough to run a simple flight control system and test the FPGA design 
philosophy selected. 
 
Hardware modules take the responsibility of performing CPU intensive tasks in a faster 
fashion and without the need to be controlled by the CPU. This method lets the CPU 
concentrate on controlling the aircraft, with further CPU cycles still available for development 
of new features such as computer vision tasks. Hardware modules interact with the processor 
using the 32-bit I/O bus system described earlier, and a simple interrupt scheme. Examples of 
hardware modules include a servo pulse width modulator, and a serial to parallel converter for 
reading data from an SPI interface.  
 
System Design 
 
Before implementing the complete platform each philosophy was investigated to determine 
which to pursue. Table 1 shows the advantages and disadvantages of each of the philosophies. 
 
Hardware Implementation 
Advantages 

• Fast, in some case immediate response 
to input changes 

• Easy to implement on FPGA 
• Adjusting an existing algorithm can 

be difficult 

Disadvantages 
• As system complexity increases, 

interfacing of components becomes 
more difficult.  

• For asynchronous systems multiple 
instances of a component may be 
required for multiple control path, 
hence increasing FPGA resource 
usage. 

Software implementation on soft processor core 
Advantages 

• Flexibility in design through changes 
in software. 

• Allows components to be instantiated 
once on the FPGA and used for 
multiple tasks sequentially, hence 
reducing FPGA resource usage. 

Disadvantages 
• No better than use of a microprocessor 

chip 

Combination of Hardware and Software 
Advantages 

• Can change hardware and software to 
achieve goal in a new way 

• CPU intensive tasks can be performed 
in hardware 

Disadvantages 
• Time need to be spent developing 

interfaces between software and 
hardware. 

 
Table 1:  Advantages and disadvantages of various FPGA design philosophies 

 
As Table 1 shows, by combining a hardware and software based solution we are able to 
maximise the design flexibility, while maintaining a simple way to develop the algorithms. 
Further, the system can easily handle a large number of 32 bit I/O devices without adversely 
loading the CPU to control the I/O system. 
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Fig. 1:  MIPS architecture in VHDL 

 
Fig. 1 shows the common ‘MIPS’ microprocessor architecture components: Fetch, Decode 
and Execute with the augmented I/O registers and interrupt scheme as they are implemented in 
VHDL. The Fetch and Decode stage have been extended to include enhanced interrupt and I/O 
instructions for the dedicated I/O system. 
 
A test circuit was designed consisting of pressure and temperature sensors, as well as a servo 
output. Sensor measurements were digitized using a 12-bit A/D converter which provides 
serial output data. A full measurement cycle of one sensor requires 16 clock cycles. As an 
example, if we are to sample 10 sensor inputs at 1kHz, then 160 000 clock cycles per second 
will be dedicated only to data sampling. To reduce this overhead, a hardware module was 
created that samples the serial input data when required. These modules are independent of the 
processor and can run in parallel, as such the only load on the CPU will be for the data to be 
transferred to a register after interrupt. With the current architecture such a transfer will 
require 3 clock cycles, hence reducing the number of clock cycles required to 30 000 clock 
cycles per second.  
 
Other modules were produced to further decrease the CPU loading: 
 
Timing module: this module is used to signal when a specified time has passed. Time is 
specified in number of clock cycles. A developer can use one of these modules to delay 
sampling of a sensor input or to count time. The timer can be set by connecting the timer input 
to one of the processors output registers. Multiple timers can be used to accurately count clock 
cycles while not using any CPU resources. 
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Fig. 2: Control platform architecture 

 
 
Servo PWM module: a common output device for aircraft control is the servo motor. These 
motors are typically controlled with a pulse width modulated (PWM). The time the PWM 
signal is held high relates to the desired angle. The PWM module takes a number as specified 
from an output register, and converts it to a PWM signal for a servo motor. Again, the module 
uses no CPU resources and is designed for flexible use with a variety of servo motors.  
 
RS232 Communication controller: for the system to report the state of parameters to another 
computer for example a communications system is required. A typically communications 
packet may contain header information, the amount of data being transmitted, the body data 
and a footer. This task of creating the packet of data and transferring it to the buffer is 
executed by the CPU. To alleviate the need for the CPU to do this, a module was designed 
that takes the body data straight from the CPU registers, creates the header and packet 
information and controls transmission. The software developer does not need to worry about 
controlling transmission with this architecture, and a large number of CPU cycles can be 
saved.  
 
External Floating Point Unit (EFPU): to perform advanced functions on a UAV some 
intensive mathematics may be required. Examples of common CPU intensive tasks for UAV 
control include numerical integration and the Kalman filter algorithm [2]. These tasks can be 
performed by a small hardware controller and floating point unit. The idea is that the CPU can 
pass parameters to the Kalman filter controller for example in which the EFPU can process the 
resulting states and return them to the CPU when the calculation is complete.  
 
To demonstrate the ability of the new architecture the proportional control system in Fig. 3 
was designed and implemented in MIPS assembly. The control system measures pressure and 
aircraft roll and determines servo outputs according to the control signal required to get the 
craft to the desired states.  



 
 

Fig. 3: Simple proportional flight controller system 
 
The final design has a control loop that uses only 11 instructions for calculation, with 
additional cycles used when data is updated from inputs. With such a small loop the control 
parameters can be updated at a high frequency with only a small number of CPU cycles 
utilized. This leaves room for more advanced features to be implemented on the CPU and also 
in hardware.  
 

 
Conclusions 

By utilizing an FPGA’s flexibility a different design philosophy was explored for use in UAV 
flight control. Combining a software based controller with supporting hardware modules the 
designer is able to use a larger number of I/Os without adversely affecting CPU performance. 
With a control system capable of sustaining roll angle and altitude the design philosophy was 
shown to use a small number of clock cycles leaving room for advanced features and 
additional pay load for a UAV mission. Further, the design is easily expanded using hardware 
modules or by modifying the control software.  
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