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Summary:  This paper discusses two methods for segmenting an image into sky and ground 
and three metrics for measuring the ‘fitness’ of the segmentation for the purpose of measuring 
the horizon angle and position. The reason for doing this is to use the horizon as a reference 
for stabilising the flight of an Unmanned Air Vehicle. (UAV). Results of applying the 
methods to video captured by a UAV are presented.      
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Introduction 
 
Why do the authors want to classify parts of the image as sky and ground? To find the 
horizon. What use is that? The displacement and angle of the horizon in the video frame can 
inform us about the attitude of the camera and hence of the aircraft. This is ongoing work 
being done by the authors as well as other groups. [1] [9][10][11][12][13][14][15][16] 
 
For our purposes, we need an algorithm that can segment a video frame into ground and sky 
parts.  We need also to be able to measure how good the segmentation is. Because the 
equipment is to me flown in a small UAV it need low computational intensity and not need a 
lot of memory in order to keep the computing device as small and light as possible. The 
method also needs to be fast, as a frame processing rate of at least 5 frames per second is 
required. 
 
For the authors’ purposes, a good segmentation has clearly defined sky and ground classes 
with little or no overlap and a well defined interface, the horizon. A circularly shaped view is 
required for our work because it makes the measurement of the horizon angle simpler, given 
the average coordinates (centroids) of the classes. [1] 
 
It is almost an everyday observation that the sky is bluer and/or brighter than the ground. On 
closer inspection this is not always true, of course. There are grey skies and blue skies with 
white clouds, and red sunsets and so on. Asked if the ground is ever blue, most of us would 
answer ‘Not often’. Anyone experienced with walking in Australia’s eucalyptus forests and 
staring at the mountains on the far horizon might answer differently, (the area around Sydney 
on NSW isn’t called the Blue Mountains for nothing), and there are blue gravel roads and blue 
tar roads and blue lakes and other exceptions. Nonetheless, it is often the case that the sky is 
bluer and/or brighter than the ground. Other researchers have also considered this question 
and discussions can be found in [4][5][6][7][8]. 
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Even grey or white skies have a profile such that the blue component is greater in the sky than 
in the ground, as evidenced by Fig. 1 and Fig. 2. The profiles are drawn from the RGB values 
of pixels in a column up the centre of the image, so the sudden jump in the profiles show the 
position of the horizon in each case. The first figure of a clear blue sky shows, not 
surprisingly, that  the blue value is higher than the red and green values above the horizon and 
the red dotted line in the blue profile shows the average blue value is below the blue value for 
all the pixels in the sample that are above the horizon.  
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Fig. 1 Clear sky and RGB profiles 

 
Fig. 2 on the other hand shows that the RGB profiles are all quite similar for an overcast sky. 
It does confirm that the blue component is above average above the horizon, indicating that 
the sky is merely brighter than the ground though not perceptually bluer.  However, if we 
simply ignore the red and green components in both cases, we can discriminate between 
ground and sky by using the average blue value as a threshold. 
 
 It isn’t always that simple, of course. Both these figures have relatively dark ground sections 
and this is not always the case.  Note also the values in the blue profile on the right edge of 
Fig. 1 showing a drop of blueness with increasing elevation. This can be a problem. Strangely 
enough,  Fig. 2 doesn’t show the same drop, implying that lightly overcast skies are a better 
candidate than clear blue ones for this discriminator. 
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Fig. 2 Cloudy sky and RGB profiles 

 
There are factors such as white or bright objects on the ground that complicate things, such as 
snow. There are even blue objects, such as lakes and seas, on the ‘ground’. Sometimes the 
skies are almost as dark as the ground, such as during thunderstorms. Breaks in the cloud can 
even allow sunlight through to make the ground locally brighter than the sky. These factors 
must all be taken into account because it is fairly clear that any decision made on a mistaken 
assumption of the position of the ground and sky could easily be disastrous for a flying 
vehicle. It may not in the end be possible to always decide on the basis of a visible-light image 
just where the sky and ground are, but on the other hand, it often is. What is needed is a 
simple method that works more often than not, and most importantly, a measurable value or 
values that allows us to decide if the decision is trustworthy. 
 
 

Method one: Otsu  thresholding using blue only. 
 
Otsu’s algorithm works on a one-dimensional histogram to produce a threshold value that 
segments the histogram values into two classes in a manner that is claimed to be optimal for 
class separation.  
The algorithm first counts the number of pixels in the image that have a particular value of 
blue, usually using a coarse quantiser so there aren’t too many levels in the histogram. Then, 

for as many levels are represented in the histogram it calculates the value of a metric 2
bδ  that 

would be generated if that level of the blue were used as a threshold to classify all the pixels 
with lower blue levels as belonging to class one, and the rest as being in class two. 
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Eqn. 1 

1u and 2u are the mean values of blue for each class and 1ω and  2ω are the number of pixels 
in or the probability of belonging to the class. The first term maximises class separation and 
the second term tends to equalise the size of the classes because 21ωω  is a maximum when 

1ω =  2ω  . The metric is called 2
bδ  because it is a measure of the variance between the 

classes. Over all, maximising 2
bδ  maximises the difference between the blue values of the 

pixels belonging to the different classes. 

The threshold that generates the greatest value of 2
bδ  is the level that creates classes with the 

largest interclass variance [2].  Fig. 4 shows an example of the threshold chosen by the Otsu 
method for a given histogram and it can be clearly seen that the threshold has been 
automatically chosen to fall in the space between two large clusters in the values of blue. 
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Fig. 3 Threshold for binarisation from Otsu method and the 2
bδ    metric 

Fig. 3 shows the results of applying Otsu’s histogram analysis method to the blue component 
of the aerial video footage in the Grampians2 video. The software used in this case was 
Matlab, making use of the graythresh.m function that implements Otsu’s algorithm. The 

resulting threshold for segmentation is shown as well as the 2
bδ  metric (scaled to be visible in 



the same graph) that the algorithm uses. The graph shows that the threshold, for that particular 
video sequence, is centred on about a blue level 150 out of a maximum of 255, with 
deviations usually limited to +/- 20 or so. By observing the segmented video, the authors have 

determined that 2
bδ  is a good indicator of unreliable segmentation, marked in the graph by the 

sudden drops in the metric below about 40 with this scaling. The video of the segmentation of 
the Grampians2 video sequence using Otsu’s method can be seen in the file “sky-ground-otsu-
only-grampians2.avi” Fig. 4 shows a snapshot from that video showing the original image, 
the segmented image, the blue histogram and the threshold determined by Otsu’s algorithm as 

well as a graph of the 2
bδ   metric for all the processed frames up to that point in time. In this 

sequence, where the sky is clear and pale blue near the horizon and the ground is well lit 
without too much in the way of lightly colored objects on it, the segmentation using just the 
histogram analysis works reasonably well. The histogram of the blue component of the image 
is clearly bi-modal with distinct clusters, in this frame and in the majority of other frames. 
Most of the untrustworthy frames are due to video telemetry corruption, or when the horizon 
goes out of view. Note that there is a lake in the view in this sequence however, and it can 
clearly be seen from the accompanying video how that causes misclassification errors which 

are not indicated by the 2
bδ  metric. 
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Fig. 4 Snapshot of Grampians2 video segmented  using Otsu's method 

 
Fig. 5 shows a snapshot from a different sequence called Varms101. In this case the day was 
much more clouded and it was later in the day with a bright horizon. Fig. 5 is singled out as 

one example of how the segmentation can fail but be detected. Note that the value of the 2
bδ  

metric (this time scaled to have a maximum value of about 1) is very low at the time of this 
snapshot, indicating that the segmentation cannot be relied upon.  The video “sky-ground-
otsu-only-varms101.avi” shows the entire segmented sequence using Otsu’s method. 
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Fig. 5 Snapshot of  cloud misclassified as ground by Otsu's method. Varms101 video. 
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Fig. 6 Another bad example, with  metric score above mean. Varms101 video. 



Unfortunately, in this sequence there are other examples of failed classification that are not 

well indicated by the 2
bδ  metric. Fig. 6 shows one such where the histogram shows that there 

is not a clear distinction between sky and ground and the threshold selected by Otsu’s 
algorithm has resulted in cloud misclassified as ground, but with a high confidence score of 

about 0.9. This is near the mean for the whole sequence. This indicates that the 2
bδ  metric by 

itself is not an adequate indicator of reliability. This is not surprising, as the 2
bδ  metric does 

not take the spatial grouping of the pixels into account at all, merely their blue value, so in 
marginal cases such as presented in the Varms101 video, misclassification will occur 
undetected. 
 
 

Metric2.5 
 

This metric (so called because it is a minor change from the second metric the authors 

considered) is measured using the statistics of the classified pixels in a manner similar to 2
bδ   

but operating on their spatial coordinates not heir blue values. It combines the mean 
coordinates 1u and 2u  of the two classes  with the populations 1n and 2n of each class  and the 
radius of the circular viewport, R . If a rectangular viewport is being used, the method behind 
metric2.5 still applies but there would need to be adjustments made to account for the 
asymmetries introduced by the corners of the view for different angles of the horizon. With a 
circular viewport, these adjustments are not required. As the authors are using a circular 
viewport to facilitate the horizon angle calculations anyway, for reasons explained in [1], this 
does not impose any extra computational burden. The formula for metric2.5 is very similar to 
that used by Otsu’s algorithm and the method could be seen as an extension of that work. The 
major differences are that it is applied to a two-dimensional variable, the spatial coordinate, 
and the product of population terms is de-emphasised: 
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Eqn. 2 

The exponent of 1/3 applied to the product of the populations is to reduce its weight compared 

to the separation of the classes given by ( )221 uu − . The 33R  in the denominator is a 
normalising factor to bring the value down to near 1. The effect of the population product is to 
increase the metric in favour of classes that have similar sized populations as the product is a 

maximum when the populations are the same, because 21 nn +  is a constant. The ( )221 uu −  
term containing the class average coordinates, or centroids, increases as the class separation 
increases, which favours segmentations that have the classes well separated in space. This 
could lead to segmentations where there is one large class with a centrally located average 
coordinate and one small class with its average coordinate right on the circumference, but the 
term containing the populations discourages this by decreasing as the class sizes become 
dissimilar. The authors are concerned by the exponential terms as they lead to increased 
computational load and it would be reasonable to experiment with alternative means of 

altering the weights of each term. For a constant viewport size, the 33R  is a constant.  



Fig. 7 shows the comparison for metric2.5 and the 2
bδ  metric, for the varms101 sequence, as 

well as their product. The file “metric2p5-on-otsu-varms101.avi” shows the segmented 
sequence. 
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Fig. 7 Metric2.5 applied to Otsu thresholded video 

Again, it is possible to find frames in this sequence where misclassified pixels are not 
indicated by a low value for metric2.5. Fig. 8 shows a frame from the beginning of the 
sequence as an example. The classes are distinct and similarly sized so metric2.5 has a 
relatively high value, even though the pixels classified as ground are in fact due to dark 

clouds. Note however that in this case the 2
bδ  metric has a relatively low value. The combined 

use of these two metrics will be better than either alone, using their product. (This can be seen 
in the file “metric2p5-on-otsu-product-grampians2-badmarked.avi” which marks segmented 
frames as ‘bad’ if the product of the metrics falls below a pre-determined threshold). It can be 
seen from Fig. 7 that the two metrics tend to agree on disastrously untrustworthy classification 
such as that in the region of frame 50 and that metric 2.5 will pick up errors such as that near 
frames 120 and  230 that the Otsu metric may miss. 
 
Fig. 9 shows the value and images for frame 120 where metric2.5 has a low value as it has 
detected that the classes are not clustered nicely into two distinct areas and the Otsu metric has 
a reasonably large value indicating that the histogram is bi-modal. This means that there is 
good contrast between the areas of the image that have a high blue value and the areas that 
don’t. This is one case where this contrast in color value does not indicate the sky and ground 
parts of an image, but it can be rejected on the basis of the spatial arrangement of the  classes.  
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Fig. 8 Metric2.5 showing high value for misclassified frame. 
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Fig. 9 Example where metric2.5 has low value and Otsu metric has high 



 
Method 2 Kmeans clustering using blue, spatial position and texture. 

 
A problem with the Otsu and similar color thresholding methods is that they do not take the 
spatial arrangement of the pixels into account. This can and does lead to pixels that are just 
above the upper ground ‘blueness’ threshold being classified as sky despite being much closer 
to the average ground spatial coordinates that they are to the average sky spatial coordinates. 
Whilst this can sometimes be detected by methods such as the metric2.5 discussed above, it 
would be better to avoid the problem in the first place. A method that also used the spatial 
Euclidean proximity of a pixel to other pixels that have been classified as either ground or sky 
would naturally produce more coherent segmentation classes. One such is the k-means 
classifier, and the implementation used in this work was from a book due to Sing-Tze Bow [3] 
and written as a Matlab function by Frank Dellaert of Georgia Tech. [17] 
 
Essentially the k-means method starts with the approximate mean positions of k classes 
(where k=2 in this case) It then classifies pixels as belonging to the class whose mean position 
(centroid) is closest to the position of the pixel. Having done that, each class’s centroid is re-
calculated and the classification of pixels is done again. This procedure is repeated until the 
class centroids change by less than some small amount from one iteration to the next. For the 
next frame, it is reasonable to initially use the centroids as found for the last frame. This 
reduces the number of iterations compared to random initial centroids, but might cause errors 
due to persistent local maxima. 
 
A disadvantage of the k-means classifier is that it is more computationally intensive than the 
histogram analysis method of Otsu. This is because it must consider not one attribute of the 
pixel, its blue component measurement but three; blue, x position and y position. Worse, it 
must consider these three measurements for every pixel whereas Otsu’s method considered 
the histogram of the blue component, which has many fewer datapoints than there are pixels. 
Thus k-means applied to an NxM sized image requires O(IxKxNxM) operations where I is the 
number of iterations needed and K is the number of classes, whereas Otsu needed only 
O(HxH) where H is the number of values that blue can take, which is independent of the 
image size. Quantising the blue value so that the histogram has only 16 bins, for example, 
reduces the number of operations to order 16 squared. For k-means, reducing the spatial 
dimensions of the image to the point where it requires a similar number of operations means a 
great loss of resolution. 
 
Fig. 10 shows an example where the k-means classifier (first image on second row) has a 
better result of correctly segmenting out sky and ground pixels than Otsu’s classifier (second 
image first row) on a challenging frame with dark skies and ground. This is not to say that the 
k-means classifier always works perfectly, but observation shows that it works at least as well 
as the Otsu method and often better. The video “kmeans-bluemeans-and-otsu-varms101.avi” 
shows the entire sequence. 
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Fig. 10 K-means classifier compared to Otsu's, showing better result. 

 
The k-means segmentation method can produce a spurious segmentation that satisfies the 
spatial criteria used for metric2.5 even when operating on a low contrast image, as shown in 
Fig. 11 where the segmented image (first on second row) shows two distinct classes that have 
apparently nothing to do with the original image. Thus criteria not relying solely on spatial 
arrangement of the classes are required to measure the ‘confidence’, or lack of it, that should 

be associated with the segmentation. We must keep in mind that the 2
bδ  metric is not 

automatically available in this process, but a related measure that is simple to calculate uses 
the difference in the mean blue component of the resulting classes. The mean values in each 
dimension (blue, x, y) are be accumulated as part of the algorithm. Should the absolute value 
of this difference be small, then low confidence should be placed on the segmentation. It may 
in fact be a ‘good’ segmentation, in that the position of the horizon is in accordance with what 
a human viewer might arrive at but if the original image was of very low contrast and the 
resulting mean blue values of the classes are too similar, then it is best to err on the side of 
caution and treat the result as being dubious. Another reason for the k-means method to arrive 
at spurious classification is if the image contains a view of only ground or sky, or even noise 
from corrupted telemetry. The classifier is designed to produce two classes using the spatial 
arrangement of the blue component of the image and it will do so, but in these circumstances 
the interface between these  classes will not represent the position of the horizon, no matter 
how well defined and spatially separated the classes are. On the other hand, if the 
classification is correct and trustworthy, then there should be considerable difference in the 
mean blue value of the classes and so a metric based on that difference will usefully indicate 
how well or otherwise the algorithm worked. The equation used for bluemeans is simply:  
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Eqn. 3 

where 1u and 2u are the mean values of the blue component of each class and the constants are 
to give the measure a convenient value near 1.  This gives a measure that is a minimum of 
zero when the means are the same and approaches one when they are most different. It is 
simple to calculate and judges the worth of the segmentation based on how well the classes 
are separated in the blue dimension. It is assumed that they are spatially disjoint because the k-
means method naturally does that. If it proves necessary another measure like metric2.5 can be 
used to quantify how well the classes are arranged spatially. So if a segmentation arrives at 
two classes that are well separated in the blue and spatial dimensions, this may be a good 
result. Otherwise it definitely isn’t. Another look at Fig. 11, this time at the graph labelled 
Bluemeans and Otsu metrics shows a very low value (compared to 1) for both metrics for this 
result, indicating lack of trustworthiness. 
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Fig. 11 K-means clustering showing a poor classification result 

 
Fig. 12 shows the results of using the bluemeans metric on the k-means clustering algorithm 
applied to the whole Varms101 video, which was quite a challenging sequence because of 

dark clouds. The 2
bδ   metric that Otsu uses is supplied for comparison. Both measures have 

been scaled to be visible in the same graph and approach a value of 1 for a good result and 0 
for a poor result. 
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Fig. 12  Bluemeans fitness metric applied to K-means clustering using blue and spatial 

coordinates. Otsu 2
bδ   metric supplied for comparison. 

 What is most significant are the changes in each measure, particularly where each sharply 
dips below their respective means indicating an untrustworthy segmentation result. Fig. 12 
shows that the two measures are largely in accord regarding untrustworthiness as they both 
have sharp dips at the same place, and these dips align with the decisions that the authors have 
made based on observing the segmentation results. The dips in the bluemeans measure are 

more  distinct than those in the 2
bδ  metric. The entire sequence is shown in the file “kmeans-

bluemeans-and-otsu-varms101.avi” 
The bluemeans metric is not a perfect indicator however. There are cases where a 
segmentation does not have a good spatial arrangement and yet does have a relatively high 
confidence score according to the bluemeans indicator. This implies, previous discussion 
notwithstanding, that it will be necessary to test the spatial arrangement of the classes. 
 

Conclusion 
 
One cannot always simply use the relative values of the blue component of an RGB visible-
light image to determine the position of the ground and the sky, but one often can and it would 
be useful to know how to do so robustly and simply. Otsu thresholding works well for clear or 
light overcast skies and isn’t very expensive to calculate, using the histogram of the blue 

component of the RGB image. The 2
bδ   metric used in Otsu’s algorithm chooses a 

segmentation threshold so that the decided classification of sky and ground has the classes 
maximally separated in the value of the blue component of the classes respective pixels. A 

low value of 2
bδ  can indicate bad segmentation in some circumstances such as low contrast in 



the image, but fails to detect it in others because it doesn’t take the spatial arrangement of 
classes into account. 

Metric2.5, which is an extension of Otsu’s 2
bδ  metric that takes the spatial arrangement of the 

classes into account is a useful adjunct to the 2
bδ   metric as it can detect segmentation results 

that do not accord with the model of spatially well separated non-overlapping sky and ground 
classes. 
 
 K-means clustering using blue and spatial coordinates of the pixels works better than Otsu’s 
method in that it produces results where the sky and ground classes are more spatially disjoint, 
but is much more computationally expensive. The Bluemeans metric is useful for quantifying 
the confidence of the K-means segmentation, which can produce incorrect but distinct and 
non-overlapping classes in images of low contrast.  
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